Journal of Organometallic Chemistry, 118 (1976) 117–122 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

π -CYCLOPENTADIENYLS OF NICKEL(II)

XV *. INSERTION REACTION OF RNCS INTO THE NICKEL-CARBON BOND

FUMIE SATO *, JUNICHI NOGUCHI and MASAO SATO

Department of Chemical Engineering, Tokyo Institute of Technology, Meguro, Tokyo (Japan) (Received March 26th, 1976)

Summary

 η^5 -C₅H₅NiPBu₃CH(CN)₂ (I) readily undergoes ethyl- or phenyl-isothiocyanate insertion, producing the stable products η^5 -C₅H₅NiPBu₃SC(NRH) = C(CN)₂ (IIIa; R = C₂H₅, IIIb; R = C₆H₅). η^5 -C₅H₅NiPPh₃CH(CN)₂ (II) reacts with RNCS (R = C₂H₅ and C₆H₅) to undergo two types of insertion reaction; with C₂H₅NCS, η^5 -C₅H₅NiPPh₃SC[N(C₂H₅)H] = C(CN)₂ (IVa) is obtained, with C₆H₅NCS, on the other hand, η^5 -C₅H₅NiPPh₃SC(=NC₆H₅)CH(CN)₂ (IVb) is produced.

IIIa and IIIb react with PBu₃ to give ionic complexes $[\eta^5-C_5H_5Ni(PBu_3)_2]^{\dagger}$ [SC- $(NC_2H_5H)=C(CN)_2$]⁻ (Va) and $[\eta^5-C_5H_5Ni(PBu_3)_2]^{+}$ [SC(= NC_6H_5)CH(CN)₂]⁻(Vb), respectively.

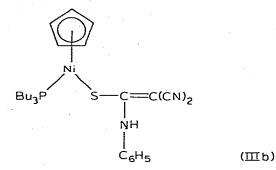
Introduction

The insertion reactions of CS₂ or RNCS into transition metal—carbon bonds have received much attention [1]. Although many insertion reactions of CS₂ have been reported, only a few cases of RNCS insertions are known [2]. Recently we have investigated the reactivity of compounds of the type η^5 -C₅H₅NiPBu₃X. It has been shown that η^5 -C₅H₅NiPBu₃SR compounds readily undergo CS₂ insertion to produce the stable compound η^5 -C₅H₅NiPBu₃SC(S)SR [3] and that η^5 -C₅H₅-NiPBu₃SC₂H₅ also undergoes C₆H₅NCS insertion to give η^5 -C₅H₅NiPBu₃[SC(=NC₆-H₅)SC₂H₅ [4]. This paper describes the insertion reactions of RNCS (R = C₂H₅ and C₆H₅) with η^5 -C₅H₅NiPR'₃CH(CN)₂ (R' = Bu and Ph), and some properties of the compounds thus obtained.

* For part XIV see ref. 8.

Results and discussion

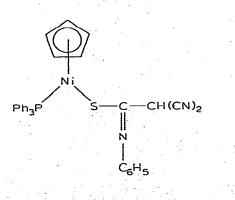
118


Preparation of η^5 -C₅H₅NiPR₃CH(CN)₂ (R = Bu and Ph)

A large number of phosphine-stabilized π -cyclopentadienyl-alkys and -aryls have been prepared by the reaction of a π -cyclopentadienylnickel halide with Grignard or organolithium reagents [5].

 π -cyclopentadienyltri-n-butylphosphinenickel malononitrile, π -C₅H₅NiPBu₃-CH(CN)₂ (I), and π -cyclopentadienyltriphenylphosphinenickel malononitrile, η^{5} -C₅H₅NiPPh₃CH(CN)₂ (II), were obtained from reactions of η^{5} -C₅H₅NiPBu₃Cl and η^{5} -C₅H₅NiPPh₃Cl with sodium malononitrile, respectively, in excellent yield.

Reactions of RNCS with I and II

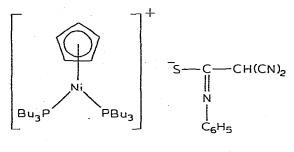

After standing for 24 h at room temperature, a mixture of an excess of C_6H_s -NCS and I in benzene gave reddish-brown crystals which had the molecular formula η^5 -C₅H₅NiPBu₃CH(CN)₂C₆H₅NCS. Based on its IR and NMR spectra, the product was formulated as:

The IR spectrum of IIIb showed absorption bands at 3210 [ν (NH)] and 2180 cm⁻¹ [ν (C \equiv N)]. The ¹H NMR peaks of IIIb in CDCl₃ appeared at τ 8.3–9.2 (PBu₃, 27H), 4.71 (η^{5} -C₅H₅, s, 5H), 2.5–2.9 (aromatic, 5H) and 1.82 ppm (NH, broad, 1H). IIIb was also obtained by reaction between η^{5} -C₅H₅NiPBu₃Cl and NaSC(NHC₆H₅)=C(CN)₂ [6].

A similar reaction of II with C_6H_5NCS gave red crystals which had the molecular formula η^5 - $C_5H_5NiPPh_3CH(CN)_2C_6H_5NCS$ (IVb). Surprisingly, the IR spectrum of IVb showed no $\nu(NH)$, and the ¹H NMR spectrum showed no peak due to an NH proton but a singlet at τ 8.44 ppm due to the CH proton of CH(CN)₂. in addition to the peaks which are assigned to the phenyl and η^5 - C_5H_5 protons. Thus we formulated IVb as shown below:

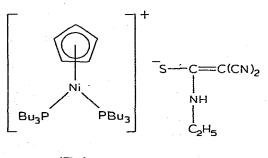
(ӏѴҌ)

IVb was also obtained by reaction of η^5 -C₅H₅NiPPh₃Cl and NaS-C(NHC₆H₅)-=C(CN)₂.


 C_2H_5NCS also inserted into the nickel—carbon bond of I and II to afford η^5 - $C_5H_5NiPBu_3SC(NHC_2H_5)=C(CN)_2$ (IIIa) and η^5 - $C_5H_5NiPPh_3SC(NHC_2H_5)=C(CN)_2$ (IVa), respectively. The properties and elemental analysis data of compounds IIIa, IIIb and IVa, IVb are given in Table 1. In Table 2 the IR and NMR data are listed.

It is interesting to find that the mode of insertion of RNCS into η^5 -C₅H₅NiPR'₃-CH(CN)₂ is dependent on R and R', but it is not clear why such differences exist.

Reaction of IIIa and IIIb with PBu₃


Many complexes of the type $[\eta^5 - C_5 H_5 Ni(PBu_3)_2]X$ (X = anion) have been obtained from reactions between $\eta^5 - C_5 H_5 NiPBu_3 X$ and PBu₃ [7], so we investigated the reaction of IIIa and IIIb with PBu₃.

A CH_2Cl_2 solution of IIIb was treated with an equimolar amount of PBu_3 , and an instantaneous reaction occurred, the green compound Vb was formed in excellent yield. The IR and NMR spectra (Table 2) indicated that Vb can be formulated as shown below:

In contrast with the above result, the product obtained from a similar reaction of IIIa with PBu_3 was formulated based on IR and NMR data (Table 2).

(∑a)

Experimental

 $NaSC(NHC_6H_5)=C(CN)_2$ was prepared by the method described in the literature [6]. IR spectra were recorded on a JASCO-IR-G spectrometer. Proton NMR

		Color	M.p. (°C)	C)	Analyses:	Analyses: found (calcd.) %	, 0				
					0	н		Z		S	
η ⁵ -C ₅ H ₅ Ni(PBu ₃)S	n ⁵ -C ₅ H ₅ Ni(PBu ₃)SC(NHC ₂ H ₅)=O(CN) ₂	Red	7677	7.	58.0	6'1		8.8		6,6	
ر Lua) S-Ce He Ni(PBua)S	C(NHC+H+)=C(CN)+	Reddish	115-116	116	(57.8) 61.6	(8,0) 7.6		(8.8) 8.1		(6.7) 6.1	
IIIb)		brown	ł		(61.6)	(1,2)	9	(8.0)		(1'9)	
15-C5H5 Ni(PPh3)S	$\eta^5 \cdot C_5 H_5 Ni(PPh_3)SC(NHC_2 H_5) = C(CN)_2$	Red	150-	150-151.5	64.4	4.8		7.6		6,9	-
(IVa)					(64.7)	(6.9)	Ŭ	(1.8)	-	(0'9)	
-ccH2 NI(PPh3)S	$^{\circ}$ -C ₅ H ₅ Ni(PPh ₃)SC(=NC ₆ H ₅)CH(CN) ₂	Red	173.5	173.6-175	68,0	4.2		6,8	-	5,8	
(Vb) 75-CeHeNi(PRus)	(ועם) נייז-Cs He Ni(PRus), ו†רSC(NHCc,H-)≡רוכח), 1-	Green	RR-R0		(67.6) 61.5	(4.4) 0.3	~ -	7.2)	-	(6.5) 4.4	
(Va)		10000	2		(61.8)	(9.6)	Ţ	(8.2)		(4.7)	
n5-C5H5NI(PBu3)	[n ⁵ -C ₅ H ₅ Ni(PBu ₃) ₂] ⁺ [SC(=NC ₆ H ₅)CH(CN) ₂] -	Green	3637	7	64,4	9.2	•	5,4		4.3	1
(Vb)					(64.3)	(0.0)	~	(2.8)		(4,4)	
Compound IIIa IVa Va	'H NMR data" (τ, ppm) η ⁵ -C ₅ H ₅ NH 4.75 s ^C 3.48(br) 4.71 s 1.82(br) 4.79 s 3.71(br) 4.76 s 3.89(br)		PBu ₃ 8.3-9.2 ^d 8.3-9.2 8.2-9.2 ^d	C ₆ H ₅ 2.5-2.9 2.2-3.2		Other 6.34(p) ^f (N-CH ₂) 6.74(p) (N-CH ₂) 8.91(t) (N-C-CH ₃) 8.44(s) [CH(CN) ₂] 6.33(p) (N-CH ₂)	H2) (12) (13) (13) (13) (2)	□ ∑ ₩ ₩ ₩ ₩ ₩	IR data v(NH) 3200 3210 3230 3230	IR data ^o (cm ⁻¹) v(NH) 3200 3210 3230 3270	

spectra were recorded on a JEOL-JNM-4H 100NMR spectrometer with TMS as the internal standard.

Reaction of η^5 -C₅H₅NiPBu₃Cl with NaCH(CN)₂

When 0.26 g (3 mmol) of NaCH(CN)₂ was added to a 20 ml of ether solution of η^5 -C₅H₅NiPBu₃Cl (0.36 g, 1 mmol) at room temperature, the color of the solution changed from red to green-brown. After 3 h stirring, the solvent was removed and the residue was crystallized from ether/n-hexane to give 0.33 g (84% yield) of I: m.p. 79.5–80°C; NMR τ 5.04 (s, η^5 -C₅H₅) and 8.6–9.4 ppm [PBu₃-+ CH(CN)₂] (measured in CDCl₃). Anal. Found: C, 60.9; H, 8.6; N, 7.1. C₂₀H₃₃-N₂NiP calcd.: C, 61.4; H, 8.4; N, 7.2%.

Reaction of η^{5} -C₅H₅NiPPh₃Cl with NaCH(CN)₂

NaCH(CN)₂ (0.26 g, 3 mmol) was added to a solution of 0.42 g (1 mmol) of η^5 -C₅H₅NiPPh₃Cl in 20 ml of benzene, the mixture was then stirred for 3 h at room temperature. The solvent was removed under vacuum and the residue crystallized from benzene/n-hexane to give 0.32 g (70% yield) of II.: m.p. 147.5–148.5°C; NMR τ 4.78 (s, η^5 -C₅H₅), 2.2–2.8 (PPh₃) and 9.10 ppm [d,CH-(CN)₂, J(P–CH) 12.2 Hz] (measured in CDCl₃). Anal. Found: C, 68.9; H, 4.5: N, 6.1. C₂₆H₂₁N₂NiP calcd.: C, 69.2; H, 4.8; N, 6.2%.

Reaction of I with C_6H_5NCS

A solution containing I (0.39 g, 1 mmol) and C_6H_5NCS (5 g, 40 mmol) in 20 ml benzene was stirred at room temperature for 24 h. The solution was evaporated to dryness and the residue was crystallized from CH_2Cl_2/n -hexane to give 0.47 g (90% yield) of IIIb. Using the same procedure IIIa was obtained in 80% yield.

Reaction of II with C_6H_5NCS

 C_6H_5NCS (40 mmol) was added to a solution of 0.45 g (1 mmol) of II in 20 ml of benzene, the mixture was then stirred at room temperature for 24 h. The solvent was removed under vacuum and the residue crystallized from CH_2Cl_2/n -hexane to give 0.49 g (85% yield) of IVb. Using the same procedure IVa was obtained in 80% yield.

Reaction of η^5 -C₅H₅NiPBu₃Cl with NaSC(NHC₆H₅)=C(CN)₂

A mixture of η^{5} -C₅H₅NiPBu₃Cl (0.36 g, 1 mmol) and NaSC(NHC₆H₅)=C(CN)₂ (0.66 g, 3 mmol) in 20 ml benzene was stirred at room temperature for 3 h. The solution was evaporated to dryness under vacuum and the residue crystallized from benzene/n-hexane to give 0.37 g (70% yield) of IIIb. Using the same procedure IVb was obtained in 85% yield.

Reaction of IIIb with PBu₃

When 0.20 g (1 mmol) of PBu₃ was added to a solution of IIIb (0.53 g, 1 mmol) in 20 ml CH_2Cl_2 , the color of the solution immediately changed from brown-red to green. The solution was evaporated to dryness under vacuum and the residue crystallized from CH_2Cl_2 /ether to afford Vb (0.65 g, 90% yield). Using the same procedure Va was obtained in 90% yield.

References

1 I.S. Butler and A.E. Fenster, J. Organometal. Chem., 66 (1974) 161.

2 J.D. Wilkins, J. Organometal. Chem., 65 (1974) 383.

3 F. Sato, K. Iida and M. Sato, J. Organometal. Chem., 39 (1972) 197.

4 F. Sato and M. Sato, J. Organometal. Chem., 46 (1972) C63

5 P.W. Jolly and G. Wilke, "The Organic Chemistry of Nickel", Vol. 1, Academic Press, New York and London, 1974, p215.

6 R. Gompper and E. Kutter, Angew. Chem., 74 (1962) 251.

7 F. Sato, K. Nakamura and M. Sato, J. Organometal. Chem., 67 (1974) 141 and ref. therein.

8 F. Sato, M. Etoh and M. Sato, J. Organometal. Chem., 70 (1974) 101.